

	Figure 4.6 from textback																
	H 2.1 Ibra Strancha co'otana																
ativity –	Li 1.0	Be 1.5	pulls c								B 2.0	C 2.5	N 3.0	O 3.5	F 4.0		
tronega	Na _{0.9}	Mg 1.2									AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0		
g elect	K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
creasin	Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	 2.5
Dec	Cs _{0.7}	Ba _{0.9}	La–Lu 1.0–1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	TI 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2
V	Fr 0.7	Ra _{0.9}	Ac 1.1	Th 1.3	Pa 1.4	U 1.4	Np–No 1.4–1.3										

EN of H = Z.1 unitless

Cabsolutely equally divided between the two atoms.

Vector has size a direction

dipole = two poles one S+ # S-Indication of how equal or unequal the sharing of the et are.

Bond	AEN	non-polar, Polor, ionic?
0.9 3.0 Na-Cl	$\Delta E N = 3.0 - 0.9 $ = 2.1	Ionic Nat CT
$\begin{array}{ccc} 3.5 & 2.1 \\ 0 - H \end{array}$	AEN= 3.5-2.1	polar bond O-H
C - H	DEN= 2.5-2.1 = 0.4	non-polar C-H
$\frac{1.0}{1.0} = \frac{2.1}{P}$	AEN= 2.1-1.0 = 1.1	Polar Li-P St. 8-
Fe - 0	VEN = 3.5-1.8	polar Fe-0
um Pal		this is jonic

Nml	Dolar					
6.4		1,7				
$0 \leq 0.4$	6.4 4 1.7		1.7~			

<u>L'onic</u> Cation & anion Comprised of a metal cation & nonmetal anion

Metal - Jonic Strict Definition Ponic AEN > 1.7

HzO water

$$H_{zO}$$
 water
 H_{zO}
 H_{zO}

Ended Chapter 4.2 on Electronegativitics

- Chapter 4.3 is nomenclature (we covered this)
- Chapter 4.4 is Lewis Structures

Lewis Structures

- provide or Communicate atom Connectivity - Model or theory that helps to find or predict the atom Connectivity of a Simple inorganic or organic molecule.

- System used to write the atom connectivity of simple & complicated molecules.

Octet Rule Every element (except H) is trying to obtain an octet: H ----> He duet 15th Group "A" values are the # of valence c IA ZA 3A tA SA 6A 7A Li Be. B. C. NA 5A 6A 7A . Li Be. B. C. NA 56 . Na . Si. P. S. C. Na . Si. P. S. C. not usually in Lewis structures because they make ions marcler to obtain an octet

Each bond adds Ic to the Count for each atom

- Locate Central atom

$$\Rightarrow$$
 often the least EN atom
 \Rightarrow often communicated by an underline
 HCN $H-C=N$:
 $\frac{1}{2}$ Central
 CO_2 $\dot{O}=C=\dot{O}$;

- Bond all elements to the central with ~ a single bond.
- place lone pairs of et on outter most (most EN) elements to give them an octet (80)

- use tripple or double bonds to give central atom an actet if needed.
- Check valence et used
- Check Octets

all octets satisfied

CH20 Formaldehyde

Two Choices to fix this 4et from one oxygen or 2et from each oxygen 160-

 $: O \equiv C - O$: $: O \equiv C = O$ $: O \equiv C = O$ $: O \equiv C = O$

Formal Charge

Forwal Charge = Valence
$$e^{-1} - \frac{1}{2}$$
 bonding - nonbording
 $4A^{=4e^{-1}}$
 $A^{=4e^{-1}}$
 $A^{=4e^{-1}}$
 $A^{=4e^{-1}}$
 $A^{=4e^{-1}}$
 $A^{=4e^{-1}}$
 $A^{=4e^{-1}}$
 $A^{=-1}$
 $A^{=-1}$

